Знак отсюда следует


Таблица математических символов — Википедия

Символ (TeX)
(Команда (TeX))
Символ (Юникод) Название Значение Пример
Произношение
Раздел математики
⇒{\displaystyle \Rightarrow }
(\Rightarrow)
→{\displaystyle \rightarrow }
(\rightarrow)
⊃{\displaystyle \supset }
(\supset)

Импликация, следование A⇒B{\displaystyle A\Rightarrow B} означает «если A{\displaystyle A} верно, то B{\displaystyle B} также верно».
(→ может использоваться вместо или для обозначения функции, см. ниже.)
(⊃ может использоваться вместоили для обозначения надмножества, см. ниже.).
x=2⇒x2=4{\displaystyle x=2\Rightarrow x^{2}=4} верно, но x2=4⇒x=2{\displaystyle x^{2}=4\Rightarrow x=2} неверно (так как x=−2{\displaystyle x=-2} также является решением).
«влечёт» или «если…, то» или

«отсюда следует»

везде
⇔{\displaystyle \Leftrightarrow }
(\Leftrightarrow)
Равносильность A⇔B{\displaystyle A\Leftrightarrow B} означает «A{\displaystyle A} верно тогда и только тогда, когда B{\displaystyle B} верно». x+5=y+2⇔x+3=y{\displaystyle x+5=y+2\Leftrightarrow x+3=y}
«если и только если» или «равносильно»
везде
∧{\displaystyle \wedge }
(\wedge)
Конъюнкция A∧B{\displaystyle A\wedge B} истинно тогда и только тогда, когда A{\displaystyle A} и B{\displaystyle B} оба истинны. (n>2)∧(n<4)⇔(n=3){\displaystyle (n>2)\wedge (n<4)\Leftrightarrow (n=3)}, если n{\displaystyle n} — натуральное число.
«и»
Математическая логика
∨{\displaystyle \vee }
(\vee)
Дизъюнкция A∨B{\displaystyle A\vee B} истинно, когда хотя бы одно из условий A{\displaystyle A} и B{\displaystyle B} истинно. (n⩽2)∨(n⩾4)⇔n≠3{\displaystyle (n\leqslant 2)\vee (n\geqslant 4)\Leftrightarrow n\neq 3}, если n{\displaystyle n} — натуральное число.
«или»
Математическая логика
¬{\displaystyle \neg }
(\neg)
¬ Отрицание ¬A{\displaystyle \neg A} истинно тогда и только тогда, когда ложно A{\displaystyle A}. ¬(A∧B)⇔(¬A)∨(¬B){\displaystyle \neg (A\wedge B)\Leftrightarrow (\neg A)\vee (\neg B)}
x∉S⇔¬(x∈S){\displaystyle x\notin S\Leftrightarrow \neg (x\in S)}
«не»
Математическая логика
∀{\displaystyle \forall }
(\forall)
Квантор всеобщности ∀x,P(x){\displaystyle \forall x,P\left(x\right)} обозначает «P(x){\displaystyle P\left(x\right)} верно для всех x{\displaystyle x}». ∀n∈N,n2⩾n{\displaystyle \forall n\in \mathbb {N} ,\;n^{2}\geqslant n}
«Для любых», «Для всех», «Для всякого»
Математическая логика
∃{\displaystyle \exists }
(\exists)
Квантор существования ∃x,P(x){\displaystyle \exists x,\;P\left(x\right)} означает «существует хотя бы один x{\displaystyle x} такой, что верно P(x){\displaystyle P\left(x\right)}» ∃n∈N,n+5=2n{\displaystyle \exists n\in \mathbb {N} ,\;n+5=2n} (подходит число 5)
«существует»
Математическая логика
={\displaystyle =} = Равенство x=y{\displaystyle x=y} обозначает «x{\displaystyle x} и y{\displaystyle y} обозначают одно и то же значение». 1 + 2 = 6 − 3
«равно»
везде
:={\displaystyle :=}

:⇔{\displaystyle :\Leftrightarrow }
(:\Leftrightarrow)
=def{\displaystyle {\stackrel {\rm {def}}{=}}}
(\stackrel{\rm{def}}{=})

:=

:⇔

 

Определение x:=y{\displaystyle x:=y} означает «x{\displaystyle x} по определению равен y{\displaystyle y}».
P:⇔Q{\displaystyle P:\Leftrightarrow Q} означает «P{\displaystyle P} по определению равносильно Q{\displaystyle Q}»
ch(x):=12(ex+e−x){\displaystyle {\rm {ch}}\left(x\right):={1 \over 2}\left(e^{x}+e^{-x}\right)} (определение гиперболического косинуса)
A⊕B:⇔(A∨B)∧¬(A∧B){\displaystyle A\oplus B:\Leftrightarrow (A\vee B)\wedge \neg (A\wedge B)} (определение исключающего «ИЛИ»)
«равно/равносильно по определению»
везде
{,}{\displaystyle \{,\}} { } Множество элементов {a,b,c}{\displaystyle \{a,\;b,\;c\}} означает множество, элементами которого являются a{\displaystyle a}, b{\displaystyle b} и c{\displaystyle c}. N={1,2,…}{\displaystyle \mathbb {N} =\{1,\;2,\;\ldots \}} (множество натуральных чисел)
«Множество…»
Теория множеств
{|}{\displaystyle \{|\}} {|} Множество элементов, удовлетворяющих условию {x|P(x)}{\displaystyle \{x\,|\,P\left(x\right)\}} означает множество всех x{\displaystyle x} таких, что верно P(x){\displaystyle P\left(x\right)}. {n∈N|n2<20}={1,2,3,4}{\displaystyle \{n\in \mathbb {N} \,|\,n^{2}<20\}=\{1,\;2,\;3,\;4\}}
«Множество всех… таких, что верно…»
Теория множеств
∅{\displaystyle \varnothing }
(\varnothing)
{}{\displaystyle \{\}}
 

{}

Пустое множество {}{\displaystyle \{\}} и ∅{\displaystyle \varnothing } означают множество, не содержащее ни одного элемента. {n∈N|1<n2<4}=∅{\displaystyle \{n\in \mathbb {N} \,|\,1<n^{2}<4\}=\varnothing }
«Пустое множество»
Теория множеств
∈{\displaystyle \in }
(\in)
∉{\displaystyle \notin }
(\notin)

Принадлежность/непринадлежность к множеству a∈S{\displaystyle a\in S} означает «a{\displaystyle a} является элементом множества S{\displaystyle S}»
a∉S{\displaystyle a\notin S} означает «a{\displaystyle a} не является элементом множества S{\displaystyle S}»
2∈N{\displaystyle 2\in \mathbb {N} }
12∉N{\displaystyle {1 \over 2}\notin \mathbb {N} }
«принадлежит», «из»
«не принадлежит»
Теория множеств
⊆{\displaystyle \subseteq }
(\subseteq)
⊂{\displaystyle \subset }
(\subset)

Подмножество A⊆B{\displaystyle A\subseteq B} означает «каждый элемент из A{\displaystyle A} также является элементом из B{\displaystyle B}».
A⊂B{\displaystyle A\subset B} обычно означает то же, что и A⊆B{\displaystyle A\subseteq B}. Однако некоторые авторы используют ⊂{\displaystyle \subset }, чтобы показать строгое включение (то есть ⊊{\displaystyle \subsetneq }).
(A∩B)⊆A{\displaystyle (A\cap B)\subseteq A}
Q⊆R{\displaystyle \mathbb {Q} \subseteq \mathbb {R} }
«является подмножеством», «включено в»
Теория множеств
⊇{\displaystyle \supseteq }
(\supseteq)
⊃{\displaystyle \supset }
(\supset)

Надмножество A⊇B{\displaystyle A\supseteq B} означает «каждый элемент из B{\displaystyle B} также является элементом из A{\displaystyle A}».
A⊃B{\displaystyle A\supset B} обычно означает то же, что и A⊇B{\displaystyle A\supseteq B}. Однако некоторые авторы используют ⊃{\displaystyle \supset }, чтобы показать строгое включение (то есть ⊋{\displaystyle \supsetneq }).
(A∪B)⊇A{\displaystyle (A\cup B)\supseteq A}
R⊇Q{\displaystyle \mathbb {R} \supseteq \mathbb {Q} }
«является надмножеством», «включает в себя»
Теория множеств
⊊{\displaystyle \subsetneq }
(\subsetneq)
Собственное подмножество A⊊B{\displaystyle A\subsetneq B} означает A⊆B{\displaystyle A\subseteq B} и A≠B{\displaystyle A\neq B}. N⊊Q{\displaystyle \mathbb {N} \subsetneq \mathbb {Q} }
«является собственным подмножеством», «строго включается в»
Теория множеств
⊋{\displaystyle \supsetneq }
(\supsetneq)
Собственное надмножество A⊋B{\displaystyle A\supsetneq B} означает A⊇B{\displaystyle A\supseteq B} и A≠B{\displaystyle A\neq B}. Q⊋N{\displaystyle \mathbb {Q} \supsetneq \mathbb {N} }
«является собственным надмножеством», «строго включает в себя»
Теория множеств
∪{\displaystyle \cup }
(\cup)
Объединение A∪B{\displaystyle A\cup B} означает множество, содержащее все элементы из A{\displaystyle A} и B{\displaystyle B} A⊆B⇔A∪B=B{\displaystyle A\subseteq B\Leftrightarrow A\cup B=B}
«Объединение … и …», «…, объединённое с …»
Теория множеств
∩{\displaystyle \cap }
(\cap)
Пересечение A∩B{\displaystyle A\cap B} означает множество одинаковых элементов, принадлежащих и A{\displaystyle A}, и B{\displaystyle B}. {x∈R|x2=1}∩N={1}{\displaystyle \{x\in \mathbb {R} \,|\,x^{2}=1\}\cap \mathbb {N} =\{1\}}
"Пересечение … и … ", «…, пересечённое с …»
Теория множеств
∖{\displaystyle \setminus }

ru.wikipedia.org

Математические знаки ≈ ∑ ⇒ ∈ ≤ ∞

В разделе собраны математические символы, которые невозможно корректно отобразить с помощью ввода на клавиатуре. Весь представленный набор можно разделить на несколько групп:

  • знаки операций – сложение, вычитание, деление, умножение, сумма, тождество;
  • символы интегралов – двойные, тройные, интеграл по объему, поверхности, с правым и левым обходом;
  • знаки сравнения – больше, меньше, равно;
  • геометрические символы – отображение угла, пропорции, диаметра;
  • геометрические фигуры;
  • знак извлечения из корня, степень;
  • иные символы – бесконечность, множество, квантор существования.

Использование данных иконок – единственный вариант корректного отображения ряда математических символов на сайте или в сообщении в любой операционной системе конечного пользователя. Достаточно лишь скопировать закодированный значок. Применение изображений для этих целей значительно усложняет процесс, требует подгонки при разработке и наполнении интернет-ресурса. Кроме того, медиа-контент занимает большой объем дискового пространства.

Математические символы подойдут для публикаций в социальных сетях, создания сообщений в чатах и форумах, разработки интернет-страниц.

Математика, как язык всех наук, не может обходиться без системы записи. Многочисленные понятия, и операторы обрели своё начертание по мере развития этой науки. Так как в стандартные алфавиты эти символы не входят, напечатать их с клавиатуры может оказаться проблематично. Отсюда можно скопировать и вставить.

Консорциуму Юникода не чужды проблемы учёных, поэтому в таблицу было включено множество различных знаков. Если тут нет того, что нужно, воспользуйтесь поиском по сайту или посмотрите в разделах математические символы, разнообразные математические символы-A, разнообразные математические символы-B, дополнительные математические операторы. Буквы для формул можно взять в наборе греческие буквы и блоке математические буквенно-цифровые символы.

Числа для степеней составляются из маленьких цифр. Там же собраны дроби.

unicode-table.com

Таблица математических символов - это... Что такое Таблица математических символов?

В математике повсеместно используются символы для упрощения и сокращения текста. Ниже приведён список наиболее часто встречающихся математических обозначений, соответствующие команды в TeXе, объяснения и примеры использования.

Кроме указанных символов, иногда используются их зеркальные отражения, например, обозначает то же, что и

Знаки операций или математические символы — знаки, которые символизируют определённые математические действия со своими аргументами.

Символ (TeX) Символ (Unicode) Название Значение Пример
Произношение
Раздел математики

Импликация, следование означает «если верно, то также верно».
(→ может использоваться вместоили для обозначения функции, см. ниже.)
(⊃ может использоваться вместо, или для обозначения надмножества, см. ниже.).
верно, но неверно (так как также является решением).
«влечёт» или «если…, то»
везде
Равносильность означает « верно тогда и только тогда, когда верно».
«если и только если» или «равносильно»
везде
Конъюнкция истинно тогда и только тогда, когда и оба истинны. , если  — натуральное число.
«и»
Математическая логика
Дизъюнкция истинно, когда хотя бы одно из условий и истинно. , если  — натуральное число.
«или»
Математическая логика
¬ Отрицание истинно тогда и только тогда, когда ложно .
«не»
Математическая логика
Квантор всеобщности обозначает « верно для всех ».
«Для любых», «Для всех»
Математическая логика
Квантор существования означает «существует хотя бы один такой, что верно » (подходит число 5)
«существует»
Математическая логика
= Равенство обозначает « и обозначают одно и то же значение». 1 + 2 = 6 − 3
«равно»
везде

 :=

:⇔

Определение означает « по определению равен ».
означает « по определению равносильно »
(Гиперболический косинус)
(Исключающее или)
«равно/равносильно по определению»
везде
{ , } Множество элементов означает множество, элементами которого являются , и . (множество натуральных чисел)
«Множество…»
Теория множеств

{ | }

{ : }

Множество элементов, удовлетворяющих условию означает множество всех таких, что верно .
«Множество всех… таких, что верно…»
Теория множеств

{}

Пустое множество и означают множество, не содержащее ни одного элемента.
«Пустое множество»
Теория множеств

Принадлежность/непринадлежность к множеству означает « является элементом множества »
означает « не является элементом множества »

«принадлежит», «из»
«не принадлежит»
Теория множеств

Подмножество означает «каждый элемент из также является элементом из ».
обычно означает то же, что и . Однако некоторые авторы используют , чтобы показать строгое включение (то есть ).

«является подмножеством», «включено в»
Теория множеств

Надмножество означает «каждый элемент из также является элементом из ».
обычно означает то же, что и . Однако некоторые авторы используют , чтобы показать строгое включение (то есть ).

«является надмножеством», «включает в себя»
Теория множеств
Собственное подмножество означает и .
«является собственным подмножеством», «строго включается в»
Теория множеств
Собственное надмножество означает и .
«является собственным надмножеством», «строго включает в себя»
Теория множеств
Объединение означает множество элементов, принадлежащих или (или обоим сразу).
«Объединение … и …», «…, объединённое с …»
Теория множеств
Пересечение означает множество элементов, принадлежащих и , и .
«Пересечение … и … », «…, пересечённое с …»
Теория множеств
\ Разность множеств означает множество элементов, принадлежащих , но не принадлежащих .
«разность … и … », «минус», «… без …»
Теория множеств
Функция означает функцию с областью определения и областью прибытия (областью значений) . Функция , определённая как
«из … в»,
везде
Отображение означает, что образом после применения функции будет . Функцию, определённую как , можно записать так:
«отображается в»
везде
N или ℕ Натуральные числа означает множество или реже (в зависимости от ситуации).
«Эн»
Числа
Z или ℤ Целые числа означает множество
«Зед»
Числа
Q или ℚ Рациональные числа означает
«Ку»
Числа
R или ℝ Вещественные числа, или действительные числа означает множество всех пределов последовательностей из
( — комплексное число: )
«Эр»
Числа
C или ℂ Комплексные числа означает множество
«Це»
Числа

<
>
Сравнение обозначает, что строго меньше .
означает, что строго больше .
«меньше чем», «больше чем»
Отношение порядка

≤ или ⩽
≥ или ⩾
Сравнение означает, что меньше или равен .
означает, что больше или равен .
«меньше или равно»; «больше или равно»
Отношение порядка
Приблизительное равенство с точностью до означает, что 2,718 отличается от не больше чем на . с точностью до .
«приблизительно равно»
Числа
Арифметический квадратный корень означает неотрицательное действительное число, которое в квадрате даёт .
«Корень квадратный из …»
Числа
Бесконечность и суть элементы расширенного множества действительных чисел. Эти символы обозначают числа, меньшее/большее всех действительных чисел.
«Плюс/минус бесконечность»
Числа
| | Модуль числа (абсолютное значение), модуль комплексного числа или мощность множества обозначает абсолютную величину .
обозначает мощность множества и равняется, если конечно, числу элементов .
«Модуль»; «Мощность»
Числа и Теория множеств
Сумма, сумма ряда означает «сумма , где принимает значения от 1 до », то есть .
означает сумму ряда, состоящего из .


«Сумма … по … от … до …»
Арифметика, Математический анализ
Произведение означает «произведение для всех от 1 до », то есть
«Произведение … по … от … до …»
Арифметика
 ! Факториал означает «произведение всех натуральных чисел от 1 до включительно, то есть

« факториал»
Комбинаторика
Интеграл означает «интеграл от до функции от по переменной ».
«Интеграл (от … до …) функции … по (или d)…»
Математический анализ
df/dx
f'(x)
Производная или означает «(первая) производная функции от по переменной ».
«Производная … по …»
Математический анализ

Производная -го порядка или (во втором случае если  — фиксированное число, то оно пишется римскими цифрами) означает «-я производная функции от по переменной ».
«-я производная … по …»
Математический анализ

dic.academic.ru

Знак отсюда следует в ворде. Где на клавиатуре знак приблизительно (примерно равно)

Вероятнее всего, вы хотя бы раз сталкивались с необходимостью вставить в MS Word знак или символ, которого нет на компьютерной клавиатуре. Это могло быть, к примеру, длинное тире, символ градуса или правильной дроби, а также много чего другого. И если в некоторых случаях (тире и дроби) на помощь приходит функция автозамены, то в других все оказывается намного сложнее.

Мы уже писали о вставке некоторых специальных символов и знаков, в этой статье мы расскажем о том, как быстро и удобно добавлять в документ MS Word любые из них.

1. Кликните в том месте документа, куда необходимо вставить символ.

2. Перейдите во вкладку “Вставка” и нажмите там кнопку “Символ” , которая находится в группе “Символы” .

3. Выполните необходимое действие:

  • Выберите в развернувшемся меню нужный символ, если он там есть.

  • Если же нужный символ в этом небольшом окошке будет отсутствовать, выберите пункт “Другие символы” и найдите его там. Кликните по необходимому символу, нажмите кнопку “Вставить” и закройте диалоговое окно.

Примечание: В диалоговом окне “Символ” содержится очень много различных символов, которые сгруппированы по тематикам и стилям. Для того, чтобы быстрее найти нужный символ, вы можете в разделе “Набор” выбрать характерный для этого символа, например, “Математические операторы” для того, чтобы найти и вставить математические символы. Также, можно изменять шрифты в соответствующем разделе, ведь во многих из них тоже есть различные символы, отличные от стандартного набора.

4. Символ будет добавлен в документ.

Вставка специального знака

1. Кликните в том месте документа, куда необходимо добавить специальный знак.

2. Во вкладке “Вставка” откройте меню кнопки “Символы” и выберите пункт “Другие символы” .

3. Перейдите во вкладку “Специальные знаки” .

4. Выберите необходимый знак, кликнув по нему. Нажмите кнопку “Вставить” , а затем “Закрыть” .

5. Специальный знак будет добавлен в документ.

Примечание: Обратите внимание, что в разделе “Специальные знаки” окна “Символ” , помимо самих специальных знаков вы также можете увидеть горячие комбинации клавиш, которые можно использовать для их добавления, а также настроить автозамену для конкретного символа.

Вставка символов Юникода

Вставка знаков Юникода мало чем отличается от вставки символов и специальных знаков, за исключением одного важного преимущества, заметно упрощающего рабочий процесс. Более подробная инструкция о том, как это сделать, изложена ниже.

Выбор знака Юникода в окне “Символ”

1. Кликните в том месте документа, куда нужно добавить знак Юникода.

2. В меню кнопки “Символ” (вкладка “Вставка” ) выберите пункт “Другие символы” .

3. В разделе “Шрифт” выберите необходимый шрифт.

4. В разделе “Из” выберите пункт “Юникод (шестн)” .

5. Если поле “Набор” будет активно, выберите необходимый набор символов.

6. Выбрав нужный символ, кликните по нему и нажмите “Вставить” . Закройте диало

usercpu.ru

Список логических символов — Википедия

Символ

Название Объяснение Примеры Значение
Unicode
Название в
HTML
Символ
LaTeX
Читается как
Категория
Импликация AB верно, только когда либо A ложно, либо B истинно.

→ может означать то же самое, что и ⇒ (символ может также указывать область определения и область значений функции, см. таблицу математических символов).

⊃ может означать то же самое, что и ⇒ (символ может также обозначать надмножество).

x = 2  ⇒  x2 = 4 истинно, но x2 = 4   ⇒  x = 2, в общем случае, ложно (поскольку x может быть равен −2). U+21D2

U+2192

U+2283

&rArr;

&rarr;

&sup;

⇒{\displaystyle \Rightarrow }\Rightarrow
→{\displaystyle \to }\to
⊃{\displaystyle \supset }\supset
⟹{\displaystyle \implies }\implies
из .. следует; если .. то
логика высказываний, алгебра Гейтинга[en]
Тогда и только тогда A ⇔ B истинно, только если оба значения A и B ложны, либо оба истинны. x + 5 = y + 2  ⇔  x + 3 = y U+21D4

U+2261

U+2194

&hArr;

&equiv;

&harr;

⇔{\displaystyle \Leftrightarrow }\Leftrightarrow
≡{\displaystyle \equiv }\equiv
↔{\displaystyle \leftrightarrow }\leftrightarrow
⟺{\displaystyle \iff }\iff
тогда и только тогда
логика высказываний
отрицание Утверждение ¬A истинно тогда и только тогда, когда A ложно.

Знак /, расположенный поверх другого оператора, означает то же самое, что «¬», помещённое перед выражением.

¬(¬A) ⇔ A
x ≠ y  ⇔  ¬(x = y)
U+00AC

U+02DC

&not;

&tilde;

~

¬{\displaystyle \neg }\lnot или \neg
∼{\displaystyle \sim }\sim
not (не)
логика высказываний
конъюнкция Утверждение AB истинно, если и A, и B истинны, и ложно в противном случае. n < 4  ∧  n >2  ⇔  n = 3, если n — натуральное число. U+2227

U+0026

&and;

&amp;

∧{\displaystyle \wedge }\wedge или \land
\&[2]
and (и)
логика высказываний, Булева алгебра
логическая дизъюнкция Утверждение AB верно, если A или B (или оба) верны. Если оба не верны, утверждение неверно. n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 когда n является натуральным числом. U+2228 &or; ∨{\displaystyle \lor }\lor или \vee
or (или)
логика высказываний, Булева алгебра

исключающее или Утверждение AB верно, когда либо A, либо B верно, но не оба. AB означает то же самое. A) ⊕ A всегда верно, AA всегда неверно. U+2295

U+22BB

&oplus; ⊕{\displaystyle \oplus }\oplus
⊻{\displaystyle \veebar }\veebar
xor
логика высказываний, Булева алгебра

Тавтология Утверждение ⊤ безусловно верно. A ⇒ ⊤ всегда верно. U+22A4 T ⊤{\displaystyle \top }\top
верх
логика высказываний, Булева алгебра

Противоречие Утверждение ⊥ безусловно неверно. ⊥ ⇒ A всегда верно. U+22A5 &perp; F ⊥{\displaystyle \bot }\bot
ложь, неверно, ошибочно
логика высказываний, Булева алгебра
Квантор всеобщности ∀ xP(x) или (xP(x) означает P(x) верно для всех x. ∀ n ∈ ℕ: n2 ≥ n. U+2200 &forall; ∀{\displaystyle \forall }\forall
для любого; для всех
Логика первого порядка

Квантор существования ∃ x: P(x) означает, что существует по меньшей мере один x, такой, что P(x) верно. ∃ n ∈ ℕ: n чётно. U+2203 &exist; ∃{\displaystyle \exists }\exists
существует
логика первого порядка

∃!

Единственность ∃! x: P(x) означает, что существует ровно один x, такой, что P(x) верно. ∃! n ∈ ℕ: n + 5 = 2n. U+2203 U+0021 &exist; ! ∃!{\displaystyle \exists !}\exists !
существует в точности один
логика первого порядка
Определение x := y илиx ≡ y означает, что x является другим обозначением для y (но заметьте, что ≡ может означать и другое, как, например, конгруэнтность).

P :⇔ Q означает, что P логически эквивалентно Q.

cosh x := (1/2)(exp x + exp (−x))

A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)

U+2254 (U+003A U+003D)

U+2261

U+003A U+229C

:=
:

&equiv;

&hArr;

:={\displaystyle :=}:=
≡{\displaystyle \equiv }\equiv
⇔{\displaystyle \Leftrightarrow }\Leftrightarrow
определяется как
везде

()

приоритетная группировка Операции внутри скобок выполняются первыми. (8 ÷ 4) ÷ 2 = 2 ÷ 2 = 1, но 8 ÷ (4 ÷ 2) = 8 ÷ 2 = 4. U+0028 U+0029 () ( ){\displaystyle (~)} ()
скобки
везде

Выводимо[en] xy означает, что y выводимо из x (в некоторых формальных системах). AB ⊢ ¬B → ¬A U+22A2 &#8866; ⊢{\displaystyle \vdash }\vdash
выводимо
логика высказываний, логика первого порядка

Модель[en] xy означает, что x семантически влечёт за собой y AB ⊨ ¬B → ¬A U+22A8 &#8872; ⊨{\displaystyle \vDash }\vDash
влечёт
логика высказываний, логика первого порядка

ru.wikipedia.org

Вставка математических знаков - Word

Основные математические символы

Нет

Часто используемые математические символы, такие как > и <

Греческие буквы

Строчные буквы

Строчные буквы греческого алфавита

Прописные буквы

Прописные буквы греческого алфавита

Буквоподобные символы

Нет

Символы, которые напоминают буквы

Операторы

Обычные бинарные операторы

Символы, обозначающие действия над двумя числами, например + и ÷

Обычные реляционные операторы

Символы, обозначающие отношение между двумя выражениями, такие как = и ~

Основные N-арные операторы

Операторы, осуществляющие действия над несколькими переменными

Сложные бинарные операторы

Дополнительные символы, обозначающие действия над двумя числами

Сложные реляционные операторы

Дополнительные символы, обозначающие отношение между двумя выражениями

Стрелки

Нет

Символы, указывающие направление

Отношения с отрицанием

Нет

Символы, обозначающие отрицание отношения

Наборы знаков

Наборы знаков

Математический шрифт Script

Готические

Математический шрифт Fraktur

В два прохода

Математический шрифт с двойным зачеркиванием

Геометрия

Нет

Часто используемые геометрические символы

support.office.com

Знак равенства — Википедия

Материал из Википедии — свободной энциклопедии

Символы со сходным начертанием:  ·  ·  ·
Знак равенства
=

Изображение

equals sign
Юникод U+003D
HTML-код  или 
UTF-16 0x3D
%3D

Знак равенства (=) в математике, в логике и других точных науках — символ, который пишется между двумя идентичными по своему значению выражениями.

Знак равенства в современной форме создал математик Роберт Рекорд (Robert Recorde, 1510—1558) в своём труде The Whetstone of Witte (1557). Он обосновал применение двух параллельных штрихов так (орфография оригинала — ранненовоанглийский): «…bicause noe 2 thynges can be moare equalle», то есть «никакие другие две вещи не могут быть более равными». До этого в античной и средневековой математике равенство обозначалось словесно (например est egale). Рене Декарт в XVII веке при записи стал использовать æ (от лат. aequalis), а современный знак равенства он использовал, чтобы указать, что коэффициент может быть отрицательным. Франсуа Виет знаком равенства обозначал вычитание. Символ Рекорда получил распространение далеко не сразу. В континентальной Европе знак «=» был введён Лейбницем только на рубеже XVII—XVIII веков, то есть более чем через 100 лет после смерти впервые использовавшего его для этого Роберта Рекорда.

Таблица математических знаков (символов) эквивалентности с кодами Unicode[править | править код]

Необходимо добавить символы:
1. равенства с точностью до зеркального подобия,
2. равенства «почти всюду»

В языках программирования символ = чаще всего используется для операций сравнения и/или присваивания. В некоторых языках (например, Basic) символ используется для обеих операций, в зависимости от контекста. В языках C, PHP и т. п. = обозначает присваивание, равенство записывается как ==. В Perl, кроме того, операторы для сравнения строк отличаются от операторов для сравнения чисел, равенство строк проверяет eq. В Pascal, напротив, = обозначает равенство, присваивание обозначается :=.

  • Плюс (+)
  • Минус ()
  • Знак умножения (· или ×)
  • Знак деления (: или /)
  • Обелюс (÷)
  • Знак корня ()
  • Факториал (!)
  • Знак интеграла ()
  • Набла ()
  • Знак равенства (=, , и др.)
  • Знаки неравенства (, >, < и др.)
  • Пропорциональность ()
  • Скобки (( ), [ ], ⌈ ⌉, ⌊ ⌋, { }, ⟨ ⟩)
  • Вертикальная черта (|)
  • Косая черта, слеш (/)
  • Обратная косая черта, бэкслеш (\)
  • Знак бесконечности ()
  • Знак градуса (°)
  • Штрих (, , , )
  • Звёздочка (*)
  • Процент (%)
  • Промилле ()
  • Тильда (~)
  • Карет (^)
  • Циркумфлекс (ˆ)
  • Плюс-минус (±)
  • Знак минус-плюс ()
  • Десятичный разделитель (, или .)
  • Символ конца доказательства ()

ru.wikipedia.org

Символ конца доказательства - Википедия

Конец доказательства

Изображение

end of proof
Юникод U+220E
HTML-код  или 
UTF-16 0x220E
%E2%88%8E

Символ конца доказательства (∎) («символ Халмоша», англ. Halmos, tombstone «надгробный камень») — типографский символ, используемый в математике для обозначения конца доказательства вместо сокращения Q.E.D. латинской фразы quod erat demonstrandum — «что требовалось доказать». Также используется в некоторых журналах в качестве символа конца статьи.

Символом Халмоша называется в честь математика Пола Ричарда Халмоша, который впервые использовал данный символ в математическом контексте в книге Теория меры (англ. Measure Theory) 1950 года[1].

В Юникоде в качестве заполненного прямоугольника представлен в блоке Математические операторы (англ. Mathematical Operators) под кодом U+220E и названием end of proof[2]. Схожие по начертанию символы присутствуют и в качестве геометрических фигур в соответствующем блоке: ■, ▮.

В системе компьютерной вёрстки ΤΕΧ символ доступен под командой \qedsymbol или \qed[3], а также автоматически проставляется в конце окружения proof пакета amsthm из AMS-LaTeX[4].

  • Плюс (+)
  • Минус ()
  • Знак умножения (· или ×)
  • Знак деления (: или /)
  • Обелюс (÷)
  • Знак корня ()
  • Факториал (!)
  • Знак интеграла ()
  • Набла ()
  • Знак равенства (=, , и др.)
  • Знаки неравенства (, >, < и др.)
  • Пропорциональность ()
  • Скобки (( ), [ ], ⌈ ⌉, ⌊ ⌋, { }, ⟨ ⟩)
  • Вертикальная черта (|)
  • Косая черта, слеш (/)
  • Обратная косая черта, бэкслеш (\)
  • Знак бесконечности ()
  • Знак градуса (°)
  • Штрих (, , , )
  • Звёздочка (*)
  • Процент (%)
  • Промилле ()
  • Тильда (~)
  • Карет (^)
  • Циркумфлекс (ˆ)
  • Плюс-минус (±)
  • Знак минус-плюс ()
  • Десятичный разделитель (, или .)
  • Символ конца доказательства ()

ru.wikipedia.org

Импликация — Википедия

Импликация (от лат. implicatio — «связь») — бинарная логическая связка, по своему применению приближенная к союзам «если…, то…».

Импликация записывается как посылка ⇒{\displaystyle \Rightarrow } следствие; применяются также стрелки другой формы и направленные в другую сторону, но всегда указывающие на следствие.

Суждение, выражаемое импликацией, выражается также следующими способами[1][2]:

Импликация играет очень важную роль в умозаключениях. С её помощью формулируются определения различных понятий, теоремы, научные законы[3].

При учёте смыслового содержания высказываний импликация подразумевает причинную связь между посылкой и заключением[4].

В булевой логике импликация — это функция двух переменных (они же — операнды операции, они же — аргументы функции). Переменные могут принимать значения из множества {0,1}{\displaystyle \{0,1\}}. Результат также принадлежит множеству {0,1}{\displaystyle \{0,1\}}. Вычисление результата производится по простому правилу, либо по таблице истинности. Вместо значений 0,1{\displaystyle 0,1} может использоваться любая другая пара подходящих символов, например false,true{\displaystyle \operatorname {false} ,\operatorname {true} } или F,T{\displaystyle F,T} или «ложь», «истина».

Правило:

Импликация как булева функция ложна лишь тогда, когда посылка истинна, а следствие ложно. Иными словами, импликация A→B{\displaystyle A\to B} это сокращённая запись для выражения ¬A∨B{\displaystyle \neg A\lor B}.

Таблицы истинности:

прямая импликация (от a к b) (материальная импликация (англ.)русск., материальный кондиционал (англ.)русск.)

  • если первый операнд не больше второго операнда, то 1,
  • если a⩽b{\displaystyle a\leqslant b}, то истинно (1).

«Житейский» смысл импликации. Для более лёгкого понимания смысла прямой импликации и запоминания её таблицы истинности может пригодиться житейская модель:

А — начальник. Он может приказать «работай» (1) или сказать «делай что хочешь» (0).
В — подчиненный. Он может работать (1) или бездельничать (0).

В таком случае импликация — не что иное, как послушание подчиненного начальнику. По таблице истинности легко проверить, что послушания нет только тогда, когда начальник приказывает работать, а подчиненный бездельничает.

обратная импликация (англ.)русск. (от b к a, A∨(¬B){\displaystyle A\lor (\neg B)})

  • если первый операнд не меньше второго операнда, то 1,
  • если a⩾b{\displaystyle a\geqslant b}, то истинно (1).

Обратная импликация — отрицание (негация, инверсия) обнаружения увеличения (перехода от 0 к 1, инкремента).

отрицание (инверсия, негация) прямой импликации

  • если первый операнд больше второго операнда, то 1,
  • если a>b{\displaystyle a>b}, то истинно (1).

отрицание (инверсия, негация) обратной импликации (англ.)русск. (¬A∧B{\displaystyle \lnot A\land B}), разряд займа в двоичном полувычитателе.

  • если первый операнд меньше второго операнда, то 1,
  • если a<b{\displaystyle a<b}, то истинно (1).

Другими словами, две импликации (прямая и обратная) и две их инверсии — это четыре оператора отношений. Результат операций зависит от перемены мест операндов.

Синонимические импликации выражения в русском языке[править | править код]

  • Если А, то Б
  • Б в том случае, если А
  • При А будет Б
  • Из А следует Б
  • В случае А произойдет Б
  • Б, так как А
  • Б, потому что А
  • А — достаточное условие для Б
  • Б — необходимое условие для А

Импликация высказываний означает, что одно из них следует из другого. Импликация обозначается символом ⇒{\displaystyle \Rightarrow }, и ей соответствует вложение множеств: пусть A⊂B{\displaystyle A\subset B}, тогда

x∈A⇒x∈B.{\displaystyle x\in A\Rightarrow x\in B.}

Например, если A{\displaystyle A} — множество всех квадратов, а B{\displaystyle B} — множество прямоугольников, то, конечно, A⊂B{\displaystyle A\subset B} и

(a — квадрат) ⇒{\displaystyle \Rightarrow } (a — прямоугольник).

(если a является квадратом, то a является прямоугольником).

В классическом исчислении высказываний свойства импликации определяются с помощью аксиом.

Можно доказать эквивалентность импликации A→B{\displaystyle A\rightarrow B} формуле ¬A∨B{\displaystyle \neg A\lor B} (с первого взгляда более очевидна её эквивалентность формуле ¬(A∧¬B){\displaystyle \neg (A\land \neg B)}, которая принимает значение «ложь» в случае, если выполняется A (посылка), но не выполняется B (следствие)). Поэтому любое высказывание можно заменить на эквивалентное ему без знаков импликации.

В интуиционистской логике импликация никоим образом не сводится к отрицаниям. Скорее напротив, отрицание ¬A можно представить в виде A→⊭{\displaystyle A\rightarrow \nvDash }, где ⊭{\displaystyle \nvDash } — пропозициональная константа «ложь». Впрочем, такое представление отрицания возможно и в классической логике.

В интуиционистской теории типов импликации соответствует множество (тип) отображений из A в B.

В учении о силлогизмах импликации отвечает «общеутвердительное атрибутивное высказывание».

  • Эдельман С.Л. Математическая логика. — М.: Высшая школа, 1975. — 176 с.
  • Игошин В.И. Задачник-практикум по математической логике. — М.: Просвещение, 1986. — 158 с.
  • Гиндикин С.Г. Алгебра логики в задачах. — М.: Наука, 1972. — 288 с.
  • Барабанов О.О. Импликация / Труды XI международных Колмогоровских чтений: сборник статей. – Ярославль: Изд-во ЯГПУ, 2013. С.49-53.

ru.wikipedia.org

Знак — Википедия

Материал из Википедии — свободной энциклопедии

Знак — это материально выраженная замена предметов, явлений, понятий в процессе обмена информацией в коллективе.

Знак — соглашение (явное или неявное) о приписывании чему-либо какого-либо определённого смысла, значения.

Знаком также называют конкретный случай использования такого соглашения для передачи информации. Знак может быть составным, то есть состоять из нескольких других знаков.

Цифры являются знаками чисел. Буквы являются знаками звуков и, вместе со словами, являются знаками человеческого языка.[прояснить]

Ю. М. Лотман утверждает, что знаки делятся на две группы: условные и изобразительные[1].

  • Условный — знак, в котором связь между выражением и содержанием внутренне не мотивирована. Самый распространённый условный знак — слово[1].
  • Изобразительный или иконический — знак, в котором значение имеет естественно ему присущее выражение. Самый распространённый изобразительный знак — рисунок[1].

Наука о знаковых системах называется семиотикой. Явление возникновения знаковой реальности называется семиотизацией.

Семантический треугольник.

Знаком называется материальный объект, который для некоторого интерпретатора выступает в качестве представителя какого-то другого предмета.

  • Значение знака (экстенсионал) — предмет, представляемый (репрезентируемый) данным знаком.
  • Смысл знака (интенсионал) — информация о репрезентируемом предмете, которую содержит сам знак или которая связывается с этим знаком в процессе общения или познания.

Взаимосвязь этих характеристик можно графически представить в виде семантического треугольника.

в юриспруденции

В Российской империи при Александре II были утверждены знаки для судебного ведомства, в том числе и для адвокатов.

в военном деле
в полиграфии

Используются в правилах дорожного движения

Иероглифы

На основе деления знаков на условные и изобразительные, можно выделить две разновидности искусств: изобразительные и словесные.[1]

Одной из парадоксальных тенденций изобразительного искусства является его тяготение к повествованию, свойственному словесным искусствам[1].

В литературе[править | править код]

Литература — словесное искусство, стремящееся из материала условных знаков создать словесный образ, имеющий явную иконическую природу и являющийся знаком изобразительным.[1]

В дизайне[править | править код]

Знак в дизайне — изобразительная часть логотипа, как правило, включающего также название (письменную — буквенную или иероглифическую — часть, часто также художественно оформленную) маркируемого товара, услуги, организации, мероприятия или персоны. Знак призван закрепить у адресата ассоциацию с маркируемым объектом или его владельцем и служит для различения однотипных объектов в информационном поле адресата (например, на рынке соответствующих товаров). Вместе с именем и логотипом знак составляет основу фирменного стиля (ID, идентичности, айдентики) маркируемого объекта.

Будучи зарегистрирован в патентном ведомстве, знак или логотип получает статус изобразительного или комбинированного товарного знака (знака обслуживания). В этом случае знак может быть снабжён предупредительной маркировкой — индексом ® (registered). Знак, находящийся в процессе регистрации, может быть маркирован индексом ™ (trade mark, торговая марка).

ru.wikipedia.org

Общая теория относительности — Википедия

О́бщая тео́рия относи́тельности (ОТО; нем. allgemeine Relativitätstheorie) — геометрическая теория тяготения, развивающая специальную теорию относительности (СТО), предложенная Альбертом Эйнштейном в 1915—1916 годах[1][2].

В этой теории постулируется, что гравитационные и инерциальные силы имеют одну и ту же природу.

Отсюда следует, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого́ пространства-времени, которая связана, в частности, с присутствием массы-энергии[⇨].

Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в нём материей[⇨].

ОТО в настоящее время — самая успешная теория гравитации, хорошо подтверждённая наблюдениями и рутинно используемая в астрономии[3] и в инженерных приложениях, таких как системы спутниковой навигации[4]. Первый успех общей теории относительности состоял в объяснении аномальной прецессии перигелия Меркурия[⇨]. Затем, в 1919 году, Артур Эддингтон сообщил о наблюдении отклонения света вблизи Солнца в момент полного солнечного затмения, что качественно и количественно подтвердило предсказания общей теории относительности[5][⇨]. С тех пор многие другие наблюдения и эксперименты подтвердили значительное количество предсказаний теории, включая гравитационное замедление времени, гравитационное красное смещение, задержку сигнала в гравитационном поле и гравитационное излучение[6][⇨]. Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности — существования чёрных дыр[7][⇨].

Несмотря на ошеломляющий успех общей теории относительности, в научном сообществе существует дискомфорт, связанный, во-первых, с тем, что её не удаётся переформулировать как классический предел квантовой теории[⇨], а во-вторых, с тем, что сама теория указывает границы своей применимости, так как предсказывает появление неустранимых физических расходимостей при рассмотрении чёрных дыр и вообще сингулярностей пространства-времени[⇨]. Для решения этих проблем был предложен ряд альтернативных теорий, некоторые из которых также являются квантовыми. Современные экспериментальные данные, однако, указывают, что любого типа отклонения от ОТО должны быть очень малыми, если они вообще существуют.

Значение общей теории относительности выходит далеко за пределы теории тяготения. В математике специальная теория относительности стимулировала исследования в области теории представлений групп Лоренца в гильбертовом пространстве[8], а общая теория относительности стимулировала исследования по обобщению геометрии Римана и возникновение дифференциальной геометрии пространств аффинной связности, а также разработку теории представлений непрерывных групп Ли[9].

Теорию относительности я рассматриваю как пример, показывающий, как фундаментальное научное открытие, иногда даже вопреки воле его автора, даёт начало новым плодотворным направлениям, развитие которых происходит далее по их собственному пути.

Основные принципы общей теории относительности[править | править код]

Необходимость модификации ньютоновской теории гравитации[править | править код]

Классическая теория тяготения Ньютона основана на понятии силы тяготения, которая является дальнодействующей силой: она действует мгновенно на любом расстоянии. Этот мгновенный характер действия несовместим с понятием поля в современной физике. В теории относительности никакое взаимодействие не может распространиться быстрее скорости света в вакууме.

Математически сила гравитации Ньютона выводится из потенциальной энергии тела в гравитационном поле. Потенциал гравитации, соответствующий этой потенциальной энергии, подчиняется уравнению Пуассона, которое не инвариантно при преобразованиях Лоренца. Причина неинвариантности заключается в том, что энергия в специальной теории относительности не является скалярной величиной, а переходит во временну́ю компоненту 4-вектора. Векторная же теория гравитации оказывается аналогичной теории электромагнитного поля Максвелла и приводит к отрицательной энергии гравитационных волн, что связано с характером взаимодействия: одноимённые заряды (массы) в гравитации притягиваются, а не отталкиваются, как в электромагнетизме[11]. Таким образом, теория гравитации Ньютона несовместима с фундаментальным принципом специальной теории относительности — инвариантностью законов природы в любой инерциальной системе отсчёта, а прямое векторное обобщение теории Ньютона, впервые предложенное Пуанкаре в 1905 году в его работе «О динамике электрона»[12], приводит к физически неудовлетворительным результатам.

Эйнштейн начал поиск теории гравитации, которая была бы совместима с принципом инвариантности законов природы относительно любой системы отсчёта. Результатом этого поиска явилась общая теория относительности, основанная на принципе тождественности гравитационной и инертной массы.

Принцип равенства гравитационной и инертной масс[править | править код]

В нерелятивистской механике существует два понятия массы: первое относится ко второму закону Ньютона, а второе — к закону всемирного тяготения. Первая масса — инертная (или инерционная) — есть отношение негравитационной силы, действующей на тело, к его ускорению. Вторая масса — гравитационная — определяет силу притяжения тела другими телами и его собственную силу притяжения. Эти две массы измеряются, как видно из описания, в различных экспериментах, поэтому совершенно не обязаны быть связанными, а тем более — пропорциональными друг другу. Однако их экспериментально установленная строгая пропорциональность позволяет говорить о единой массе тела как в негравитационных, так и в гравитационных взаимодействиях. Подходящим выбором единиц можно сделать эти массы равными друг другу.

Иногда принцип равенства гравитационной и инертной масс называют слабым принципом эквивалентности. Идея принципа восходит к Галилею, и в современной форме он был выдвинут ещё Исааком Ньютоном, а равенство масс было проверено им экспериментально с относительной точностью 10−3. В конце XIX века более тонкие эксперименты провёл фон Этвёш[13], доведя точность проверки принципа до 10−9. В течение XX века экспериментальная техника позволила подтвердить равенство масс с относительной точностью 10−12—10−13 (Брагинский[14], Дикке[15] и т. д.).

Принцип движения по геодезическим линиям[править | править код]

Если гравитационная масса точно равна инерционной, то в выражении для ускорения тела, на которое действуют лишь гравитационные силы, обе массы сокращаются. Поэтому ускорение тела, а следовательно, и его траектория не зависит от массы и внутреннего строения тела. Если же все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение можно связать не со свойствами тел, а со свойствами самого́ пространства в этой точке.

Таким образом, описание гравитационного взаимодействия между телами можно свести к описанию пространства-времени, в котором двигаются тела. Эйнштейн предположил, что тела движутся по инерции, то есть так, что их ускорение в собственной системе отсчёта равно нулю. Траектории тел тогда будут геодезическими линиями, теория которых была разработана математиками ещё в XIX веке.

Сами геодезические линии можно найти, если задать в пространстве-времени аналог расстояния между двумя событиями, называемый по традиции интервалом или мировой функцией. Интервал в трёхмерном пространстве и одномерном времени (иными словами, в четырёхмерном пространстве-времени) задаётся 10 независимыми компонентами метрического тензора. Эти 10 чисел образуют метрику пространства. Она определяет «расстояние» между двумя бесконечно близкими точками пространства-времени в различных направлениях. Геодезические линии, соответствующие мировым линиям физических тел, скорость которых меньше скорости света, оказываются линиями наибольшего собственного времени, то есть времени, измеряемого часами, жёстко скреплёнными с телом, следующим по этой траектории.

Современные эксперименты подтверждают движение тел по геодезическим линиям с той же точностью, как и равенство гравитационной и инертной масс.[источник не указан 2188 дней]

Кривизна пространства-времени[править | править код]

Если запустить из двух близких точек два тела параллельно друг другу, то в гравитационном поле они постепенно начнут либо сближаться, либо удаляться друг от друга. Этот эффект называется девиацией геодезических линий. Аналогичный эффект можно наблюдать непосредственно, если запустить два шарика параллельно друг другу по резиновой мембране, на которую в центр положен массивный предмет. Шарики разойдутся: тот, который был ближе к предмету, продавливающему мембрану, будет стремиться к центру сильнее, чем более удалённый шарик. Это расхождение (девиация) обусловлено кривизной мембраны.

Аналогично, в пространстве-времени девиация геодезических линий (расхождение траекторий тел) связана с его кривизной. Кривизна пространства-времени однозначно определяется его метрикой — метрическим тензором.

Различие между общей теорией относительности и альтернативными теориями гравитации определяется в большинстве случаев именно способом связи между материей (телами и полями негравитационной природы, создающими гравитационное поле[прояснить]) и метрическими свойствами пространства-времени[6].

Пространство-время ОТО и сильный принцип эквивалентности[править | править код]

Часто неправильно считают, что в основе общей теории относительности лежит принцип эквивалентности гравитационного и инерционного поля, который может быть сформулирован так:

Достаточно малая по размерам локальная физическая система, находящаяся в гравитационном поле, по поведению неотличима от такой же системы, находящейся в ускоренной (относительно инерциальной системы отсчёта) системе отсчёта, погружённой в плоское пространство-время специальной теории относительности[~ 1].

Иногда тот же принцип постулируют как «локальную справедливость специальной теории относительности» или называют «сильным принципом эквивалентности».

Исторически этот принцип действительно сыграл большую роль в становлении общей теории относительности и использовался Эйнштейном при её разработке. Однако в само́й окончательной форме теории он на самом деле не содержится, так как пространство-время как в ускоренной, так и в исходной системе отсчёта в специальной теории относительности является неискривлённым — плоским, а в общей теории относительности оно искривляется любым телом и именно его искривление вызывает гравитационное притяжение тел[16][17].

Важно отметить, что основным отличием пространства-времени ОТО от пространства-времени СТО является его кривизна, которая выражается тензорной величиной — тензором кривизны. В пространстве-времени СТО этот тензор тождественно равен нулю и пространство-время является плоским.

По этой причине не совсем корректным является название «общая теория относительности»[~ 2]. Данная теория является лишь одной из ряда теорий гравитации, рассматриваемых физиками в настоящее время, в то время как специальная теория относительности (точнее, её принцип метричности пространства-времени) является общепринятой научным сообществом и составляет краеугольный камень базиса современной физики. Следует, тем не менее, отметить, что ни одна из прочих развитых теорий гравитации, кроме ОТО, не выдержала проверки временем и экспериментом[6], то есть все они, за исключением ОТО, остались только гипотезами.

Принцип общей ковариантности[править | править код]

Математические уравнения, описывающие законы природы, должны не изменять своего вида и быть справедливыми при преобразованиях к любым координатным системам, то есть быть ковариантными относительно любых преобразований координат[18][19].

Хотя этот принцип использовался Эйнштейном при выводе ОТО, он имеет лишь эвристическое значение, так как в общековариантном виде при желании можно записать любую физическую теорию, что было указано Кретчманом ещё в 1917 году[20]. Более важным считается предположение Эйнштейна об отсутствии нединамических частей геометрии пространства-времени[21].

Принципы близкодействия и причинности[править | править код]

Принцип причинности в теории относительности утверждает, что любое событие может оказать причинно-следственное влияние только на те события, которые происходят позже него, и не может оказать влияние на любые события, совершившиеся раньше него[22]. Инвариантность причинно-следственной связи в теории относительности связана с принципом близкодействия [23][24]. В отличие от ньютоновской физики (которая основана на физическом принципе дальнодействия) теория относительности основана на физическом принципе близкодействия[25]. Согласно ему, скорость передачи причинного взаимодействия конечна и не может превышать скорости света в вакууме. Этот факт является следствием постулата причинности для временной последовательности событий и независимости скорости света от выбора системы отсчёта[26]. Поэтому причинно связанными могут быть лишь события, разделённые времениподобным интервалом, квадрат расстояния между которыми dl2{\displaystyle dl^{2}} не превышает величины c2dt2{\displaystyle c^{2}dt^{2}}, где c{\displaystyle c} — скорость света, dt{\displaystyle dt} — промежуток времени между событиями. Причинно связанные события в специальной теории относительности могут располагаться лишь на времениподобных линиях пространства Минковского. В общей теории относительности это времениподобные линии в неэвклидовом пространстве[27].

Принцип наименьшего действия[править | править код]

Принцип наименьшего действия играет важную роль в общей теории относительности.

Принцип наименьшего действия для свободной материальной точки[править | править код]

Принцип наименьшего действия для свободной материальной точки в теории относительности утверждает, что она движется так, что её мировая линия является экстремальной (дающей минимальное действие) между двумя заданными мировыми точками[28] Его математическая формулировка[29]:

δS=δ∫ds=0{\displaystyle \delta S=\delta \int ds=0}, где ds2=gikdxidxk{\displaystyle ds^{2}=g_{ik}dx^{i}dx^{k}}.

Из принципа наименьшего действия можно получить уравнения движения частицы в гравитационном поле. Получаем:

δds2=2dsδds=δ(gikdxidxk)=dxidxk∂gikdxlδxl+2gikdxidδxk{\displaystyle \delta ds^{2}=2ds\delta ds=\delta \left(g_{ik}dx^{i}dx^{k}\right)=dx^{i}dx^{k}{\frac {\partial g_{ik}}{dx^{l}}}\delta x^{l}+2g_{ik}dx^{i}d\delta x^{k}}.

Из этого следует:

δS=∫{12dxidsdxkdsdgikdxlδxl+gikdxidsdδxkds}ds=∫{12dxidsdxkdsdgikdxlδxl−dds(gikdxids)δxk}ds{\displaystyle \delta S=\int \left\{{\frac {1}{2}}{\frac {dx^{i}}{ds}}{\frac {dx^{k}}{ds}}{\frac {dg_{ik}}{dx^{l}}}\delta x^{l}+g_{ik}{\frac {dx^{i}}{ds}}{\frac {d\delta x^{k}}{ds}}\right\}ds=\int \left\{{\frac {1}{2}}{\frac {dx^{i}}{ds}}{\frac {dx^{k}}{ds}}{\frac {dg_{ik}}{dx^{l}}}\delta x^{l}-{\frac {d}{ds}}\left(g_{ik}{\frac {dx^{i}}{ds}}\right)\delta x^{k}\right\}ds}.

Здесь при интегрировании по частям во втором слагаемом учтено, что в начале и конце отрезка интегрирования δxk=0{\displaystyle \delta x^{k}=0}. Во втором члене под интегралом заменим индекс k{\displaystyle k} индексом l{\displaystyle l}. Далее:

12uiukdgikdxl−dds(gilui)=12uiukdgikdxl−gilduids−uiukdgildxk=0{\displaystyle {\frac {1}{2}}u^{i}u^{k}{\frac {dg_{ik}}{dx^{l}}}-{\frac {d}{ds}}\left(g_{il}u^{i}\right)={\frac {1}{2}}u^{i}u^{k}{\frac {dg_{ik}}{dx^{l}}}-g_{il}{\frac {du^{i}}{ds}}-u^{i}u^{k}{\frac {dg_{il}}{dx^{k}}}=0}.

Третий член можно записать в виде

−12u

ru.wikipedia.org


Смотрите также